Analytic Resolving Families for Equations with Distributed Riemann–Liouville Derivatives
نویسندگان
چکیده
Some new necessary and sufficient conditions for the existence of analytic resolving families operators to linear equation with a distributed Riemann–Liouville derivative in Banach space are established. We study unique solvability natural initial value problem fractional derivatives corresponding inhomogeneous equations. These abstract results applied class boundary problems equations time polynomials respect self-adjoint elliptic differential operator spatial variables.
منابع مشابه
Analytic solutions for the Stephen's inverse problem with local boundary conditions including Elliptic and hyperbolic equations
In this paper, two inverse problems of Stephen kind with local (Dirichlet) boundary conditions are investigated. In the first problem only a part of boundary is unknown and in the second problem, the whole of boundary is unknown. For the both of problems, at first, analytic expressions for unknown boundary are presented, then by using these analytic expressions for unknown boundaries and bounda...
متن کاملIntegrodifferential Equations with Analytic Semigroups
In this paper we study a class of integrodifferential equations considered in an arbitrary Banach space. Using the theory of analytic semigroups we establish the existence, uniqueness, regularity and continuation of solutions to these integrodifferential equations.
متن کاملDominating Analytic Families
Let A be an analytic family of sequences of sets of integers. We show that either A is dominated or it contains a continuum of almost disjoint sequences. From this we obtain a theorem by Shelah that a Suslin c.c.c. forcing adds a Cohen real if it adds an unbounded real.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2022
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math10050681